

Classification of Automated Driving System

Bidhya Shrestha¹, Bhargab Acharya¹, Jonathan Petit², Christos Papadopoulos¹

¹University of Memphis, ²Qualcomm

Introduction

- Rise of autonomous vehicles introduces variety of automated and self-driving systems.
- SDVs separate hardware from software to support flexible deployment of ADS
- Vehicles may soon run different automated driving software -both OEM and aftermarket solutions using SDVs
- ADS continuously updated with new features and safety improvements through OTA updates
- Customers may choose different systems from different vendors for various driving (e.g. urban vs highway)

Problem Statement

- Multiple ADS per vehicle requires verifying which ADS is active at any time
- Software can lie
 - Eg: Dieselgate scandal shows valid software can hide real behaviour
- Imagine an accident occurs in such hybrid world. Who's at fault?
- Most research has focused on differentiating human drivers and their behaviours only
- There is a need to classify driving systems (human and automated) for safety and accountability

Method: Data Collection and Preprocessing

Data Sources:

- Used three publicly available telematics datasets:
 - Comma2k19 Dataset (aftermarket solution)
 - Tesla-on-Road Dataset (OEM)
 - Cadillac-on-Road Dataset (OEM)

Feature Selection:

- Used TSFRESH to select 22 relevant features from carstate event of Comma dataset
- Correlation Analysis to remove correlated features resulting 17 features
- Compared 17 selected features with other dataset and found 11 common features in all dataset and 14 features common in Comma and Cadillac dataset

Data Preparation

- Standardize sampling rate to 10Hz in all dataset
- Standardize names of features and units across all dataset
- Merge dataset into unified dataset with 11 features

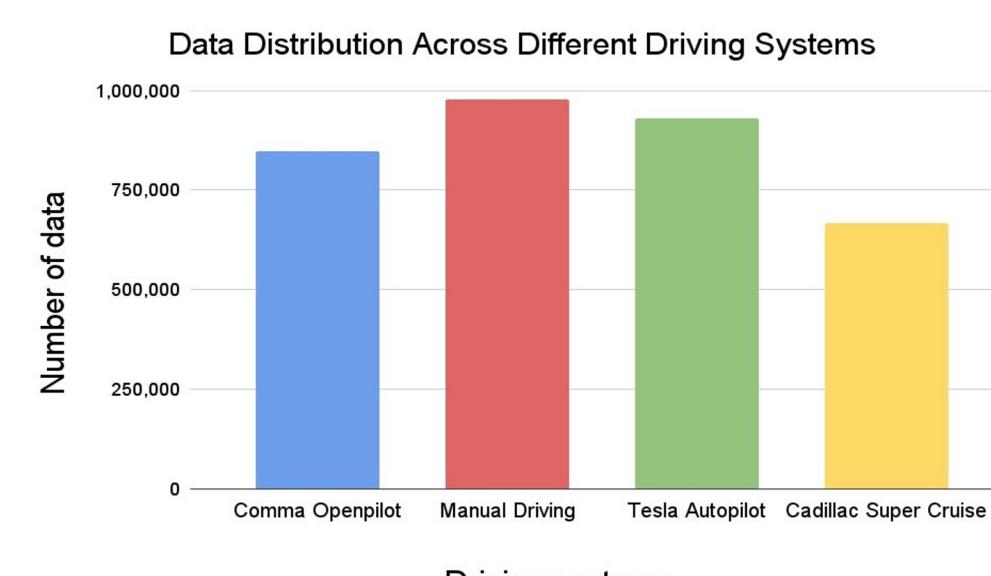


Fig: Comparison of common features across datasets

Comma	Cadillac	Tesla
vEgo (m/s)	VehicleSpeed (mph)	Veh_speed (kph)
aEgo	ActVehAccel (m/s ²)	RCM_longitudinalAccel (m/s ²)
Gas	gasPedalandACC	Pedal_accel
yawRate	InertialYawRate (deg/s)	RCM_yawRate (rad/s)
standstill (0 1)	VehMoVState (1 2 3 4)	veh_state_drive (0 1 2 5)
brakePressed	BrkPedTrvActvhd (0 1)	veh_brake_state (0 1)
(0 1)		
brakeLights (0 1)	BrkLisAtv (0 1)	ESP_brakeApply (0 1)
steeringAngleDeg (deg)	SteeringWheelAngle (deg)	veh_steering_angle (deg)
steeringRateDeg (deg/s)	SteeringWheelRate (deg/s)	veh_steering_speedps (D/S)
leftBlinker (0 1)	TurnSignals (0 1 2)	VCLLEFT_turnSignalStatus (0 1)
rightBlinker (0 1)	TurnSignals (0 1 2)	VCRIGHT_turnSignalStatus (0 1)
steeringPressed (0 1)	LKATorqueDeliveredStatus (0 1)	No similar feature
steeringTorque (Nm)	LKA_driverAppldTrq (Nm)	No similar feature
brake	BrkPdlPos (% full)	No similar feature

Fig: Comparison of common features across datasets

Model Training and Result

Trained model with 70% data and rest 30% were used for validation and testing

Experiment with 11 features

- Cadillac Super Cruise is detected almost perfectly
- Comma Openpilot rarely misses true cases but has some false positives
- Model “struggles” to classify manual driving

Type of Driving	Precision	Recall	F1-score
Comma Openpilot	0.88	0.96	0.92
Manual Driving	0.92	0.79	0.85
Tesla Autopilot	0.91	0.97	0.93
Cadillac Super Cruise	0.97	0.98	0.97

Fig: Performance Metric of Experiment with 11 features

Type of Driving	Precision	Recall	F1-score
Comma Openpilot	0.97	0.96	0.97
Manual Driving	0.94	0.95	0.94
Cadillac Super Cruise	0.99	0.99	0.99

Fig: Performance Metric of Experiment with 14 features

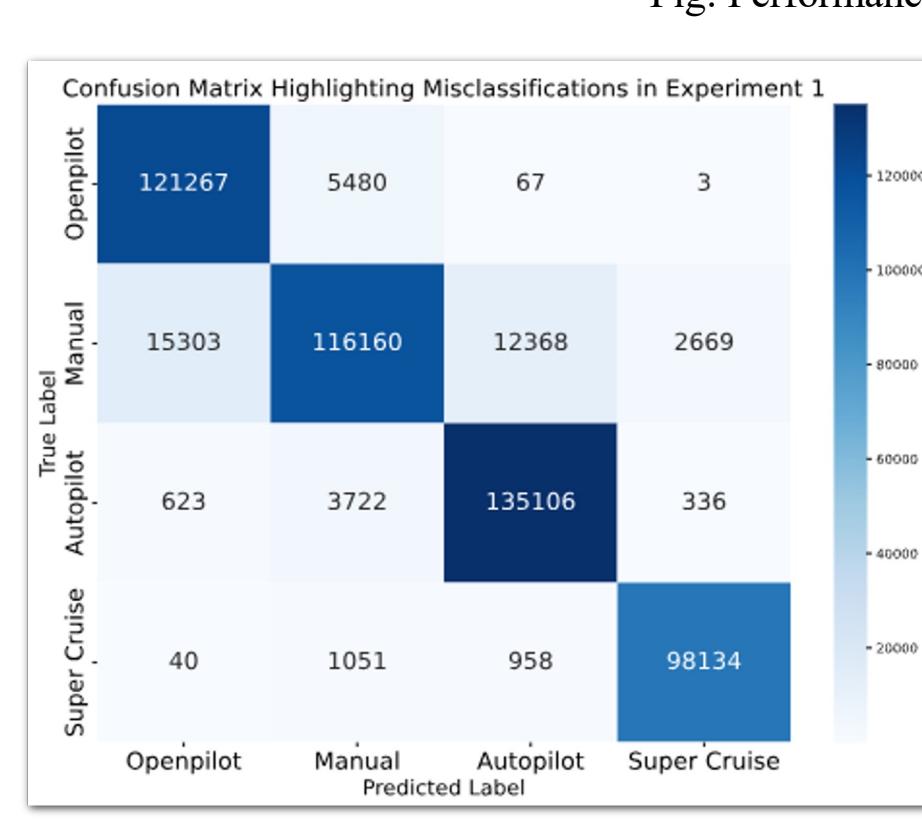


Fig: Confusion matrix with 11 features

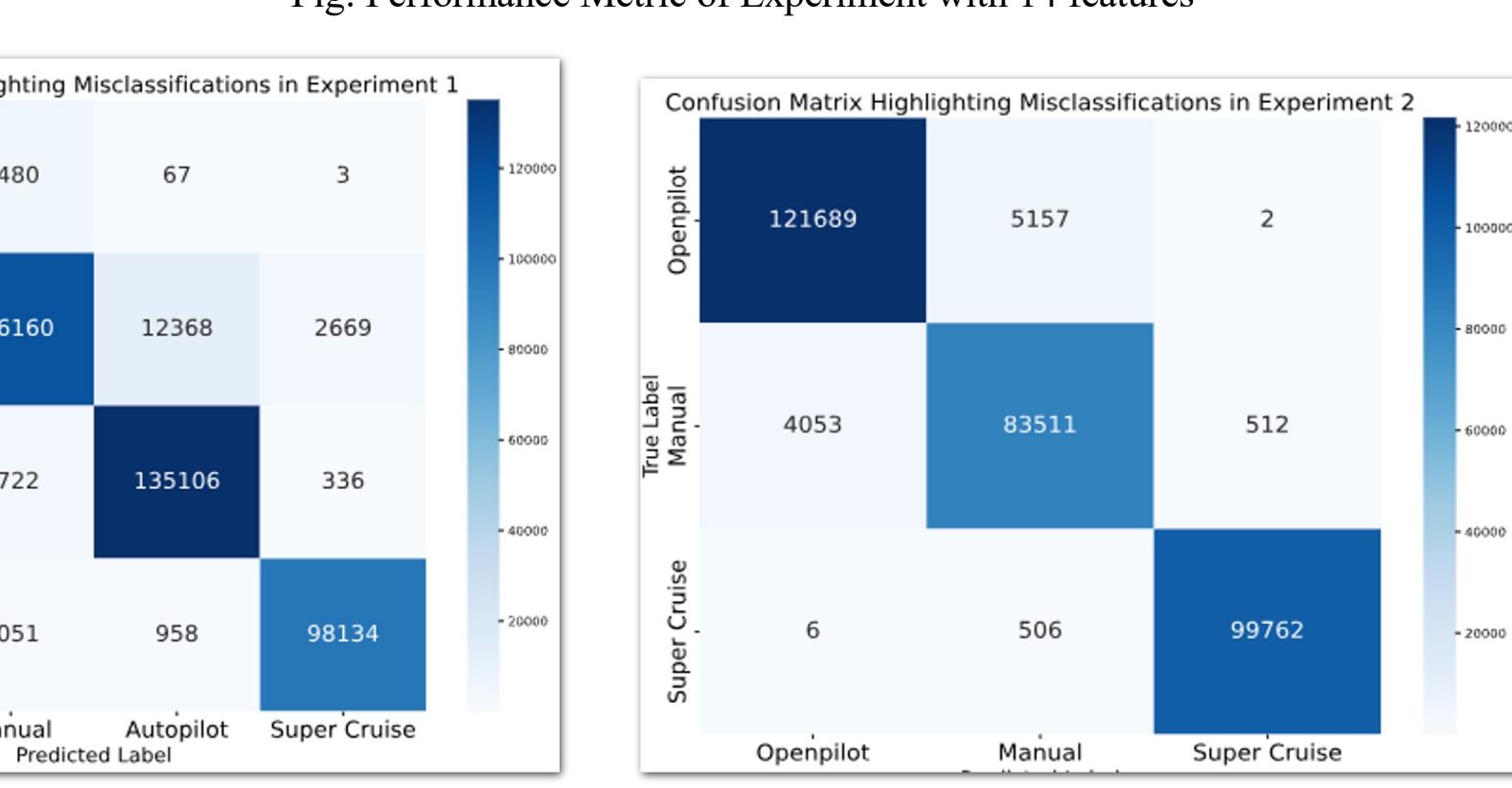


Fig: Confusion matrix with 14 features

Conclusions and Future Work

- Developed automated driving system classification model verifies the active automated system with over F1-score 90%
- Identified key features affecting classification (speed, acceleration, brake and steering angle)
- Our research is applicable to accident forensics, cybersecurity and regulatory compliance
- Significant challenges in handling heterogenous telematics datasets:
 - Difference in sampling rates, feature availability, units and naming conventions
 - Extensive normalization and preprocessing required for cross-dataset compatibility
- Future work includes:
 - Extending to additional automated driving systems
 - Exploring advanced sequence models like Transformers, xLSTM
 - Testing robustness under noise and adversarial conditions
 - Moving toward external verification of ADS behaviour
- Standardization of telematics like VSS would greatly reduce preprocessing effort, improving interoperability and accelerate ADS safety research.