
Classification of Automated Driving System

● Multiple ADS per vehicle requires verifying which ADS is active at any time
● Software can lie

○ Eg: Dieselgate scandal shows valid software can hide real behaviour
● Imagine an accident occurs in such hybrid world. Who’s at fault?

● Most research has focused on differentiating human drivers and their behaviours 
only

● There is a need to classify driving systems (human and automated) for safety and 
accountability

Data Sources:
● Used three publicly available telematics datasets:

○ Comma2k19 Dataset (aftermarket solution)
○ Tesla-on-Road Dataset (OEM)
○ Cadillac-on-Road Dataset (OEM)
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Introduction

ML Methodology

● Developed automated driving system classification model verifies the 
active automated system with over F1-score 90%

● Identified key features affecting classification (speed, acceleration, 
brake and steering angle)

● Our research is applicable to accident forensics, cybersecurity and 
regulatory compliance

● Significant challenges in handling heterogenous telematics datasets:
● Difference in sampling rates, feature availability, units and 

naming conventions
● Extensive normalization and preprocessing required for cross-

dataset compatibility
● Future work includes:

● Extending to additional automated driving systems
● Exploring advanced sequence models like Transformers, xLSTM
● Testing robustness under noise and adversial conditions
● Moving toward external verification of ADS behaviour

● Standardization of telematics like VSS would greatly reduce 
preprocessing effort, improving interoperability and accelerate  ADS 
safety research.

GRU: Gated Recurrent Unit:

Trained model with 70% data and rest 30% were used for validation and testing

Problem Statement

Method: Data Collection and Preprocessing

Model Training and Result Conclusions and Future Work

● Rise of autonomous vehicles introduces variety of automated and self-driving 
systems.

● SDVs separate hardware from software to support flexible deployment of ADS
● Vehicles may soon run different automated driving software -both OEM and 

aftermarket solutions using SDVs
● ADS continuously updated with new features and safety improvements through OTA 

updates
● Customers may choose different systems from different vendors for various driving 

(e.g. urban vs highway)

● Simpler and faster RNN designed for handling 
sequential data and capturing long-term 
dependencies

Model Architecture

● Two-layer GRU-based classifier 
designed for sequential telematics data

● Trained on sequences of 4 timesteps
● Fully Connected layer at the final step for 

classification
● Batch size: 64, Epochs 100 with early 

stopping
● Optimizer: Adam
● Loss Function: CrossEntropyLoss

● Cadillac Super Cruise is detected almost perfectly
● Comma Openpilot rarely misses true cases but has some 

false positives
● Model “struggles” to classify manual driving

Experiment with 11 features

Experiment with 14 features

● Enhanced detection for all 
driving types, especially 
manual driving recognition

● Additional three features: 
steering torque, steering 
pressed and brake created 
clearer boundaries between 
automated driving and manual 
driving

Fig: Performance Metric of Experiment with 11 features

Fig: Performance Metric of Experiment with 14 features

Fig: Confusion matrix with 11 features Fig: Confusion matrix with 14 features

Feature Selection:

● Used TSFRESH to select 22 relevant features from 
carstate event of Comma dataset

● Correlation Analysis to remove correlated features 
resulting 17 features

● Compared 17 selected features with other dataset 
and found 11 common features in all dataset and 14 
features common in Comma and Cadillac dataset

Data Preparation

● Standardize sampling rate to 10Hz  in all dataset
● Standardize names of features and units across all 

dataset
● Merge dataset into unified dataset with 11 features

Fig: Comparison of common features across datasets
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