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Introduction Problem Statement
® Rise of autonomous vehicles introduces variety of automated and self-driving ® Multiple ADS per vehicle requires verifying which ADS 1s active at any time
systems. ® Software can lie
® SDVs separate hardware from software to support flexible deployment of ADS O Eg: Dieselgate scandal shows valid software can hide real behaviour
® Vehicles may soon run different automated driving software -both OEM and ® Imagine an accident occurs in such hybrid world. Who’s at fault?
aftermarket solutions using SDV's . . . . .
, 5 , , ® Most research has focused on differentiating human drivers and their behaviours
® ADS continuously updated with new features and safety improvements through OTA
q only
upaates : : .
b , , , o ® There is a need to classify driving systems (human and automated) for safety and
® (ustomers may choose different systems from different vendors for various driving .
. accountability
(e.g. urban vs highway)
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Method: Data Collection and Preprocessing ML Methodology
Data Sources * Data Distribution Across Different Driving Systems GRU: Gated Recurrent Unit:
® Used three publicly available telematics datasets:
O CommaZ2k19 Dataset (aftermarket solution) g ® Simpler and faster RNN designed for handling
O Tesla-on-Road Dataset (OEM) g o sequential data and capturing long-term
S .
O Cadillac-on-Road Dataset (OEM) 2 oo dependencies
Feature Selection: ——
Model Architecture . . - -
[vEgo, aEgo, gas, brakePressed, standstill, brakeLights,
® Used TSFRESH to select 22 relevant features from [ Comma Cadillac Tesla leftblinker, rightblinker, yawRate, steeringAngleDeg,
vEgo (m/s) VehicleSpeed (mph) Veh_speed (kph) . steeringRateDeg]*4
carstate event of Comma dataset aEgo ActVehAccel (m/s®) RCM_longitudinal Accel ® TWO-layer GRU-based classifier
i . . . S N T T
® Correlation Analysis to remove correlated features [ Gas gasPedalandACC | Pedal_accel designed for sequential telematics data
yawRate T I\I;L}::;“ZdWR?:TZ(T;gl/;§ R(;JIM_yaw(llialc ((t(“)alc:/igls) ) . = [T Jame | e :‘)s::?ﬁzr
. standstill (0 chMovState X veh_state_drive O[1]12]5) || | = @ Trained on ceaiiencee nt 4 timectene | | URY [T URLU | sraemses Ll
resultmg 17 features brakePressed BrkPedTrvIAchvd (0 |1) | veh_brake_state (0 [1) ® Traimned on SCHUCNCES of 4 tlmestep S HniEs
. (01
® Compared 17 selected features with other dataset brLk)CLighls O | BRLEAN O[D ESP brakoApply OTD) ® Fully Connected layer at the final step for
. steeringAngleDeg | SteeringWheelAngle veh_steering_angle (deg) R .
and found 11 common features in all dataset and 14| (e deg) classification (;RU GRU ) RU 2nd layer
. . steeringRateDeg SteeringWheelRate veh_steering_speedps . . - ek » GRU = G units
features common in Comma and Cadillac dataset | @egrs) (deg/s) (DIS) ® Batch size: 64, Epochs 100 with early
leftBlinker (0|1) TurnSignals (0]1]2) VCLEFT_turnSignalStatus
. (O]1) :
Data Preparatlon rightBlinker (0[1) | TurnSignals (0[1]2) VCRIGHT_turnSignalStatus stopping Fully connected layer [ O CS/ O QJ
o[1) .. . ' S
. . ) steeringPressed LKATorqueDeliveredStatus | No similar feature o Optlmlzer- Adam Softmax
® Standardize sampling rate to 10Hz 1n all dataset [ O __ . .
stecringTorque LKADAver AppldTig No similar feature ® [oss Function: CrossEntropyLoss 0: Comma 1: Manual [ Different driving modes J
® Standardize names of features and units across all |+ b (77 1ui e — Testa s Cadillac
dataset Fig: Comparison of common features across datasets
® Merge dataset into unified dataset with 11 features / /
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Model Training and Result Conclusions and Future Work

Trained model with 70% data and rest 30% were used for validation and testing | ® Decveloped automated driving system classification model verifies the

active automated system with over F1-score 90%

Experiment with 11 features ® Identified key features affecting classification (speed, acceleration,

. L Type of Driving Precision | Recall | Fl-score brak d : 1
® (Cadillac Super Cruise 1s detected almost perfectly Eois Openoilol 088 0.6 093 rake and steering angle)
® Comma Openpilot rarely misses true cases but has some Manual Driving 0.92 0.79 0.85 ® Our research is applicable to accident forensics, cybersecurity and
fal it Tesla Autopilot 0.91 0.97 0.93 reoulatorv compliance
di5€ POSILVES Cadillac Super Cruise | 0.97 098 | 097 gulatory comp
® Model “struggles” to classify manual driving ® Significant challenges in handling heterogenous telematics datasets:
Fig: Performance Metric of Experiment with 11 features ® Difference in sampling rates, feature availability, units and
Type of Driving Precision | Recall | Fl-score naming conventions
Experiment with 14 features Comma Openpilot 0.97 0.96 0.97 ® Extensive normalization and preprocessing required for cross-
Manual Driving 0.94 0.95 0.94 o
. Cadillac Super Cruise 0.99 0.99 0.99 dataset Compatlblhty
® Enhanced detection for all I includes:
driVin tvpes. es eciall Fig: Performance Metric of Experiment with 14 features ® Future work 1nc udes.
g YI.) . ’ p .y. Confusion Matrix Highlighting Misclassifications in Experiment 1 ) S ) o ) ) . EXtending tO additional automated driVing SYStCmS
manual derlng recognlthn " Confusion Matrix Highlighting Misclassifications in Experiment 2 . . )
» H oo 7 ; ww| | g ® Exploring advanced sequence models like Transformers, xLSTM
® Additional three features: 3 < SRS

. . ® Testing robustness under noise and adversial conditions
steering torque, steering

Manual

® Moving toward external verification of ADS behaviour
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, ® Standardization of telematics like VSS would greatly reduce
clearer boundaries between . . L. .
. preprocessing effort, improving interoperability and accelerate ADS
automated driving and manual

safety research.
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: . o Fig: Confusi trix with 14 featu
Fig: Confusion matrix with 11 features 1g. L-ontusion matrix wi catures / /
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